Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2016 American Academy of Allergy, Asthma & Immunology Background Domestic water hardness and chlorine have been suggested as important risk factors for atopic dermatitis (AD). Objective We sought to examine the link between domestic water calcium carbonate (CaCO3) and chlorine concentrations, skin barrier dysfunction (increased transepidermal water loss), and AD in infancy. Methods We recruited 1303 three-month-old infants from the general population and gathered data on domestic water CaCO3 (in milligrams per liter) and chlorine (Cl2; in milligrams per liter) concentrations from local water suppliers. At enrollment, infants were examined for AD and screened for filaggrin (FLG) skin barrier gene mutation status. Transepidermal water loss was measured on unaffected forearm skin. Results CaCO3 and chlorine levels were strongly correlated. A hybrid variable of greater than and less than median levels of CaCO3 and total chlorine was constructed: a baseline group of low CaCO3/low total chlorine (CaL/ClL), high CaCO3/low total chlorine (CaH/ClL), low CaCO3/high total chlorine (CaL/ClH) and high CaCO3/high total chlorine (CaH/ClH). Visible AD was more common in all 3 groups versus the baseline group: adjusted odds ratio (AOR) of 1.87 (95% CI, 1.25-2.80; P = .002) for the CaH/ClL group, AOR of 1.46 (95% CI, 0.97-2.21; P = .07) for the CaL/ClH, and AOR of 1.61 (95% CI, 1.09-2.38; P = .02) for the CaH/ClH group. The effect estimates were greater in children carrying FLG mutations, but formal interaction testing between water quality groups and filaggrin status was not statistically significant. Conclusions High domestic water CaCO3 levels are associated with an increased risk of AD in infancy. The influence of increased total chlorine levels remains uncertain. An intervention trial is required to see whether installation of a domestic device to decrease CaCO3 levels around the time of birth can reduce this risk.

Original publication

DOI

10.1016/j.jaci.2016.03.031

Type

Journal article

Journal

Journal of Allergy and Clinical Immunology

Publication Date

01/08/2016

Volume

138

Pages

509 - 516