Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2018 IEEE. Medical manikins play an essential role in the training process of physicians. Currently, most available simulators for abdominal palpation training do not contain controllable organs for dynamic simulations. In this paper, we present a soft robotics controllable liver that can simulate various liver diseases and symptoms for effective and realistic palpation training. The tumors in the liver model are designed based on granular jamming with positive pressure, which converts the fluid-like impalpable particles to a solid-like tumor state by applying low positive pressure on the membrane. Through inflation, the tumor size, liver stiffness, and liver size can be controlled from normal liver state to various abnormalities including enlarged liver, cirrhotic liver, and multiple cancerous and malignant tumors. Mechanical tests have been conducted in the study to evaluate the liver design and the role of positive pressure granular jamming in tumor simulations.

Original publication

DOI

10.1109/EMBC.2018.8512709

Type

Journal article

Journal

Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS

Publication Date

26/10/2018

Volume

2018-July

Pages

2154 - 2157