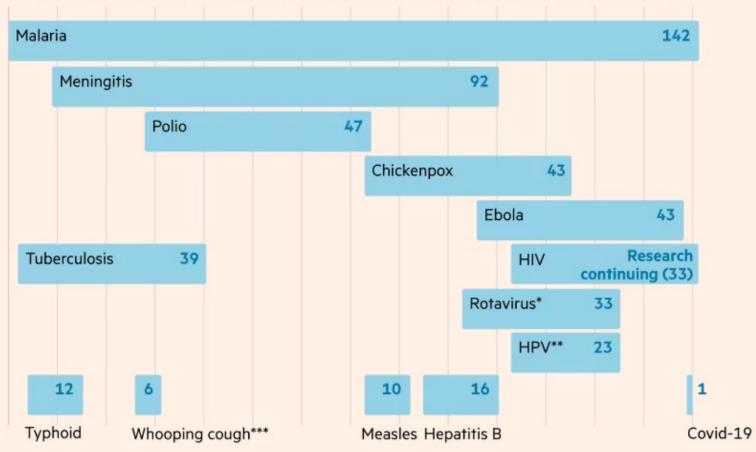


Academic Vaccine Development for Malaria


Professor Sir Adrian V. S. Hill

The Jenner Institute University of Oxford

Vaccine innovation: Time from Pathogen Discovery to a Deployed Vaccine

Time taken to develop vaccine from discovery of infectious agent, in years

1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

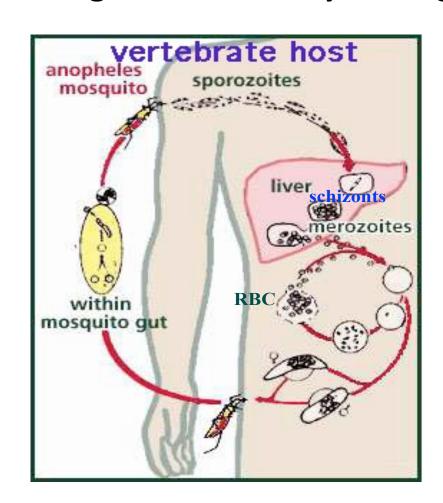
*Diarrhoeal disease **Cervical cancer ***Pertussis Sources: FT research; OurWorldinData

Malaria: The Problem

- About 500,000 deaths each year
- Mainly of young children
- Over 90% of deaths in Africa
- About \$500 million dollars a year spent "controlling" malaria
- Vaccines rolled out for the first time in 2024

Malaria Vaccines Can Target Three Life-Cycle Stages

1. Sporozoite Stage



R21 nanoparticle

3. Mosquito Stage

Pfs48/45

2. Blood Stage

PfRH5

Over 115 Years of Malaria Vaccine Research

Edmond & Etienne Sergent

Les Comptes Rendu de l'Academie des Sciences 151: 407-409, **1910**

Immunity in avian malaria: maintenance in vitro of Plasmodium relictum sporozoites. Partial immunity by inoculation of sporozoites

150 different malaria vaccine candidates have entered clinical trials since then

R21/Matrix-M™ Malaria Vaccine

Lower dose
Lower cost
Higher efficacy
& immunogenicity
Better durability
20-fold more supply

R21 - Oxford
(from 2011)

CS Proteins

(from 1984)

5µg

25µg

plus 50μg Matrix-MTM saponin adjuvant

plus 50µg **AS01**TM saponin adjuvant

- R21 consists of the central repeat and C-terminus of the CS protein fused to the N-terminus of the HBsAg.
- RTS,S required expression of a four-fold excess of the unfused HBsAg to allow it to form hybrid particles.

Source: Collins KA, et al. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. Scientific reports. 2017;7:46621

Week	0	4	8
Group 1	5μg R21 / 25μg	5μg R21 / 25μg	5μg R21 / 25μg
N = 150	Matrix-M	Matrix-M	Matrix-M
Group 2	5μg R21 / 50μg	5μg R21 / 50μg	5μg R21 / 50μg
N = 150	Matrix-M	Matrix-M	Matrix-M
Group 3	Control	Control	Control
N = 150	vaccine	vaccine	vaccine

Vaccinations started May – July 2019

Interim analysis Q3 2020; Q3 2021

Booster dose of R21/MM in June 2020, 2021, 2022

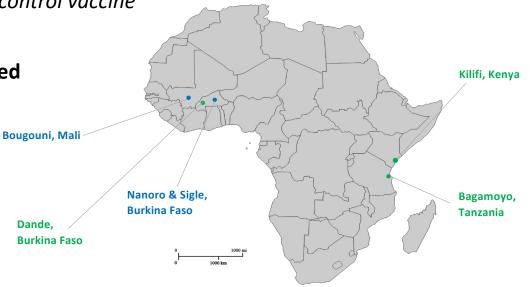
Follow-up of all subjects to 2023

PI: Halidou Tinto; Funding: EDCTP

Phase III Trial Design

• Participants: 4800, age 5-36 months at enrolment

• Randomisation: 2:1 – 5μg R21/50μg Matrix-M™: control vaccine


Double-blind

Seasonal and standard vaccination regime assessed

	Month 0	Month 1	Month 2	Boost (Month 14)
Group 1 n = 3200	5μg R21/ 50μg Matrix-M™	5μg R21/ 50μg Matrix-M™	5μg R21/ 50μg Matrix-M™	5μg R21/ 50μg Matrix-M™
Group 2 n = 1600	Control vaccine	Control vaccine	Control vaccine	Control vaccine

Mehreen Datoo, Jenner-Oxford

Ally Olotu

Alassane Dicko

Jean-Bosco Ouédraogo

Mainga Hamaluba

Halidou Tinto

Vaccine Efficacy in 5–17-month-old Vaccinees by Site

for time to first episode over one year, mPP analysis

		R21 group			Control group					
	Study Site	N	n	Т	n/T	N	n	т	n/T	Adjusted VE** (95%CI)
M2.5– M14 [^]	Seasonal	751	110	645.0	0.17	382	179	227.7	0.79	0.79 (0.73, 0.83)
	Standard	673	48	620.2	0.08	346	88	294.2	0.30	0.75 (0.65, 0.83)
	Nanoro	382	93	309.7	0.30	193	125	87.6	1.43	0.76 (0.69, 0.82)
	Bougouni	369	17	335.3	0.05	189	54	140.1	0.39	0.86 (0.76, 0.92)
	Dande	308	22	288.5	0.08	160	57	130.3	0.44	0.83 (0.72, 0.90)
	East African	365	26	331.7	0.08	186	31	163.9	0.19	0.60 (0.32, 0.76)

Very High Efficacy of 79% and 75% at seasonal and standard sites in year 1 in 5-17 month olds

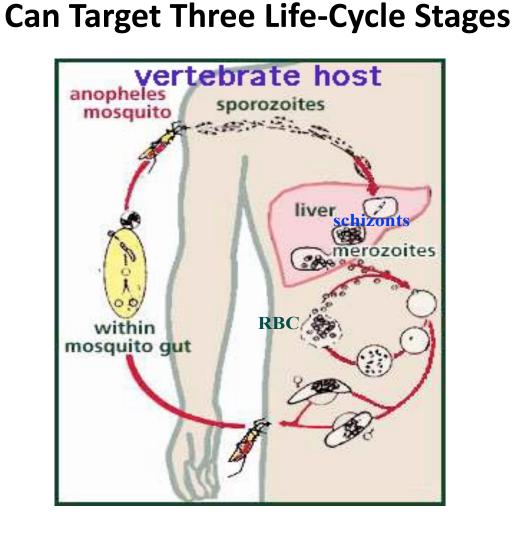
Malaria Vaccine Distribution in 2024

R21/MM for Chad, DRC, Mozambique, South Sudan, Central African Republic, Nigeria, Ivory Coast, Uganda, Ghana, Burkina Faso

RTS,S/AS01 for Ghana, Kenya, Malawi, Benin, Burkina Faso, Burundi, Cameroon, DRC, Liberia, Uganda, Niger, & Sierra Leone

Malaria Elimination Vaccines

1. Sporozoite Stage

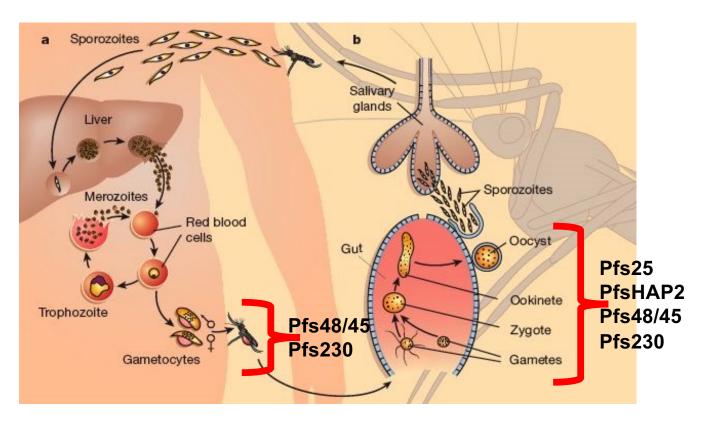


R21 nanoparticle

3. Mosquito Stage

Pfs230 and/or Pfs48/45

2. Blood Stage



PfRH5

Transmission Blocking Vaccines Parasite Candidate Antigens

a: Expressed in host

b: Expressed in vector

Three-Stage Combination Malaria Vaccine

R21/Matrix-M – licensed and being rolled out from 2024

- RH5.1 in Matrix-M* (MM)
 - 58% efficacy in Burkina Faso for RH5/MM in phase IIB trials +/- R21/MM
 - Higher efficacy >75% against high-density parasitaemia cases
- <u>Pfs230D1-CRM/MM</u> **now entering phase Ib /II west African trials** and/or
- Pfs48/45/MM Phase la completed; Burkina Faso trial ongoing

Serum Institute of India planning to provide a three-stage vaccine

Bioko Island, Equatorial Guinea

Malabo

Potential 3-Stage Malaria Vaccine **Elimination** Trial

Starting with Bioko Island, Equatorial Guinea

300,000 population

MCD Global Health collaboration, Guillermo Garcia et al.

Announcement at UN headquarters on Wednesday...

New Analysis: Malaria Elimination to Boost African Economies by \$16 Billion Average Annually

Blog ·News ·Press Releases - 06/05/2024

June 5, 2024 (London) - The GDP of countries in Africa could rise by an additional \$126.9 billion if the UN target to cut malaria by 90% from 2015 levels by 2030 is met, according to research and analysis conducted by Oxford Economics Africa, in a new report entitled 'The Malaria Dividend' from Malaria No More UK.

This represents an average boost of nearly \$16 billion a year to African economies, more than 10% of collective annual spending on health for all countries in Africa.

\$127 billion benefit vs estimated \$15-20 billion cost of elimination!

¹https://malarianomore.org.uk/sites/default/files/Zero%20Malaria%20-%20The%20Malaria%20Dividend%20ONLINE%20FINAL.pdf

Summary

- Malaria Elimination is back on the Global Health agenda
- Two anti-sporozoite malaria vaccines are newly licensed
 - a blood-stage vaccine should soon be added (RH5.1)
 - & also transmission-blocking vaccines
- Initial elimination vaccine trials have started and others will follow
 - New longer lasting anti-malarial drugs will complement vaccines in achieving elimination
- An expensive goal but succeed and the money is recovered many times over!

African Clinical Trial Principal Investigators

- Ally Olotu, Ifakara Health Institute, Bagamoyo, Tanzania
- Alassane Dicko, Malaria Research and Training Center, Mali
- Jean-Bosco Ouedraogo, INSTech, Bobo-Dioulasso, Burkina Faso
- Mainga Hamaluba, KEMRI-Wellcome Unit, Kilifi, Kenya
- Halidou Tinto, Clinical Research Unit of Nanoro, Burkina Faso

Ally Olotu

Alassane Dicko

Jean-Bosco Ouédraogo

Mainga Hamaluba

Halidou Tinto

Malaria Vaccine Lead Investigators

Jenner Institute, Oxford team leads

- Mehreen Datoo, lead clinician
- Lisa Stockdale & Katie Ewer, immunology
- Sophie Weston, project management
- Alison Lawrie, head of regulatory

Serum Institute of India team leads

- Umesh Shaligram, chief scientist
- Harish Rao, manufacturing
- Parag Nagarkar, regulatory
- Prasad Kulkarni, clinical

