Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Generally benefits and risks of vaccines can be determined from studies carried out as part of regulatory compliance, followed by surveillance of routine data; however there are some rarer and more long term events that require new methods. Big data generated by increasingly affordable personalised computing, and from pervasive computing devices is rapidly growing and low cost, high volume, cloud computing makes the processing of these data inexpensive.OBJECTIVE: To describe how big data and related analytical methods might be applied to assess the benefits and risks of vaccines.METHOD: We reviewed the literature on the use of big data to improve health, applied to generic vaccine use cases, that illustrate benefits and risks of vaccination. We defined a use case as the interaction between a user and an information system to achieve a goal. We used flu vaccination and pre-school childhood immunisation as exemplars.RESULTS: We reviewed three big data use cases relevant to assessing vaccine benefits and risks: (i) Big data processing using crowdsourcing, distributed big data processing, and predictive analytics, (ii) Data integration from heterogeneous big data sources, e.g. the increasing range of devices in the "internet of things", and (iii) Real-time monitoring for the direct monitoring of epidemics as well as vaccine effects via social media and other data sources.CONCLUSIONS: Big data raises new ethical dilemmas, though its analysis methods can bring complementary real-time capabilities for monitoring epidemics and assessing vaccine benefit-risk balance.

Original publication

DOI

10.15265/IY-2014-0016

Type

Journal article

Journal

Yearbook of medical informatics

Publication Date

15/08/2014

Volume

9

Pages

27 - 35