Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Aims To develop a computer processable algorithm, capable of running automated searches of routine data that flag miscoded and misclassified cases of diabetes for subsequent clinical review. Method Anonymized computer data from the Quality Improvement in Chronic Kidney Disease (QICKD) trial (n=942031) were analysed using a binary method to assess the accuracy of data on diabetes diagnosis. Diagnostic codes were processed and stratified into: definite, probable and possible diagnosis of Type 1 or Type 2 diabetes. Diagnostic accuracy was improved by using prescription compatibility and temporally sequenced anthropomorphic and biochemical data. Bayesian false detection rate analysis was used to compare findings with those of an entirely independent and more complex manual sort of the first round QICKD study data (n=760588). Results The prevalence of definite diagnosis of Type 1 diabetes and Type 2 diabetes were 0.32% and 3.27% respectively when using the binary search method. Up to 35% of Type 1 diabetes and 0.1% of Type 2 diabetes were miscoded or misclassified on the basis of age/BMI and coding. False detection rate analysis demonstrated a close correlation between the new method and the published hand-crafted sort. Both methods had the highest false detection rate values when coding, therapeutic, anthropomorphic and biochemical filters were used (up to 90% for the new and 75% for the hand-crafted search method). Conclusions A simple computerized algorithm achieves very similar results to more complex search strategies to identify miscoded and misclassified cases of both Type 1 diabetes and Type 2 diabetes. It has the potential to be used as an automated audit instrument to improve quality of diabetes diagnosis. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

Original publication

DOI

10.1111/j.1464-5491.2011.03457.x

Type

Journal article

Journal

Diabetic Medicine

Publication Date

01/03/2012

Volume

29

Pages

410 - 414