Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Chronic myeloid leukemia (CML) stem/progenitor cells (SPC) express a transcriptional program characteristic of proliferation, yet can achieve and maintain quiescence. Understanding the mechanisms by which leukemic SPC maintain quiescence will help to clarify how they persist during long-term targeted treatment. We have identified a novel BCR-ABL1 protein kinase dependent pathway mediated by the up-regulation of hsa-mir183, the down-regulation of its direct target EGR1 and, as a consequence, up-regulation of E2F1. We show here that inhibition of hsa-mir183 reduced proliferation and impaired colony formation of CML SPC. Downstream of this, inhibition of E2F1 also reduced proliferation of CML SPC, leading to p53-mediated apoptosis. In addition, we demonstrate that E2F1 plays a pivotal role in regulating CML SPC proliferation status. Thus, for the first time, we highlight the mechanism of hsa-mir183/EGR1-mediated E2F1 regulation and demonstrate this axis as a novel, critical factor for CML SPC survival, offering new insights into leukemic stem cell eradication.

Original publication

DOI

10.1182/blood-2017-05-783845

Type

Journal article

Journal

Blood

Publisher

American Society of Hematology

Publication Date

04/2018

Volume

131

Pages

1532 - 1544