Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This paper develops an alternative method for gene selection that combines model based clustering and binary classification. By averaging the covariates within the clusters obtained from model based clustering, we define ?meta-covariates? and use them to build a probit regression model, thereby selecting clusters of similarly behaving genes, aiding interpretation. This simultaneous learning task is accomplished by an EM algorithm that optimises a single likelihood function which rewards good performance at both classification and clustering. We explore the performance of our methodology on a well known leukaemia dataset and use the Gene Ontology to interpret our results.





Publication Date



150 - 161