Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The issue of antimicrobial resistance is of global concern across human and animal health. In 2016, the UK government committed to new targets for reducing antimicrobial use (AMU) in livestock. Although a number of metrics for quantifying AMU are defined in the literature, all give slightly different interpretations. This paper evaluates a selection of metrics for AMU in the dairy industry: total mg, total mg/kg, daily dose and daily course metrics. Although the focus is on their application to the dairy industry, the metrics and issues discussed are relevant across livestock sectors. In order to be used widely, a metric should be understandable and relevant to the veterinarians and farmers who are prescribing and using antimicrobials. This means that clear methods, assumptions (and possible biases), standardised values and exceptions should be published for all metrics. Particularly relevant are assumptions around the number and weight of cattle at risk of treatment and definitions of dose rates and course lengths; incorrect assumptions can mean metrics over-represent or under-represent AMU. The authors recommend that the UK dairy industry work towards the UK-specific metrics using the UK-specific medicine dose and course regimens as well as cattle weights in order to monitor trends nationally.

Original publication

DOI

10.1136/vr.104701

Type

Journal article

Journal

Vet Rec

Publication Date

31/03/2018

Volume

182

Keywords

antimicrobial Use, antimicrobial resistance, dairy cattle, Animals, Anti-Infective Agents, Benchmarking, Cattle, Dairying, Humans, United Kingdom