Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Post-transcriptional gene silencing (PTGS) via RNA interference (RNAi) is a vital gene regulatory mechanism for fine-tuning gene expression. RNAi effectors termed microRNAs (miRNAs) are implicated in various aspects of animal development and normal physiological function, while dysregulation has been linked to several pathologies. Several atypical miRNA biogenesis pathways have been identified, yet in most cases the reasons for their emergence remain unclear. One of these atypical pathways is the mirtron pathway, where short introns are excised by splicing to generate intermediates of the RNAi pathway, with no cleavage by the microprocessor. Closely related pathways involving tailed-mirtron and simtron biogenesis have also been described. There is extensive evidence that mirtrons function as miRNAs, and while some are evolutionarily conserved across similar species, others appear to have emerged relatively recently. In addition, through exploitation of the potent and sequence-specific silencing capabilities of RNAi, synthetic mirtrons may have potential for overcoming certain therapeutic challenges. © 2012 John Wiley & Sons, Ltd.

Original publication

DOI

10.1002/wrna.1122

Type

Journal article

Journal

Wiley Interdisciplinary Reviews: RNA

Publication Date

01/09/2012

Volume

3

Pages

617 - 632