Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2017 Morrison et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Push notifications offer a promising strategy for enhancing engagement with smartphone-based health interventions. Intelligent sensor-driven machine learning models may improve the timeliness of notifications by adapting delivery to a user's current context (e.g. location). This exploratory mixed-methods study examined the potential impact of ti ming and frequency on notification response and usage of Healthy Mind, a smartphone-based stress management intervention. 77 participants were randomised to use one of three versions of Healthy Mind that provided: intelligent notifications; daily notifications within pre-defined time frames; or occasional notifications within pre-defined time frames. Notification response and Healthy Mind usage were automatically recorded. Telephone interviews explored participants' experiences of using Healthy Mind. Participants in the intelligent and daily conditions viewed (d = .47, .44 respectively) and actioned (d = .50, .43 respectively) more notifications compared to the occasional group. Notification group had no meaningful effects on percentage of notifications viewed or usage of Healthy Mind. No meaningful differences were indicated between the intelligent and non-intelligent groups. Our findings suggest that frequent notifications may encourage greater exposure to intervention content without deterring engagement, but adaptive tailoring of notification timing does not always enhance their use. Hypotheses generated from this study require testing in future work. Trial registration number: ISRCTN67177737

Original publication

DOI

10.1371/journal.pone.0169162

Type

Journal article

Journal

PLoS ONE

Publication Date

01/01/2017

Volume

12