Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2018 The Author(s). Background: Realist approaches seek to answer questions such as 'how?', 'why?', 'for whom?', 'in what circumstances?' and 'to what extent?' interventions 'work' using context-mechanism-outcome (CMO) configurations. Quantitative methods are not well-established in realist approaches, but structural equation modelling (SEM) may be useful to explore CMO configurations. Our aim was to assess the feasibility and appropriateness of SEM to explore CMO configurations and, if appropriate, make recommendations based on our access to primary care research. Our specific objectives were to map variables from two large population datasets to CMO configurations from our realist review looking at access to primary care, generate latent variables where needed, and use SEM to quantitatively test the CMO configurations. Methods: A linked dataset was created by merging individual patient data from the English Longitudinal Study of Ageing and practice data from the GP Patient Survey. Patients registered in rural practices and who were in the highest deprivation tertile were included. Three latent variables were defined using confirmatory factor analysis. SEM was used to explore the nine full CMOs. All models were estimated using robust maximum likelihoods and accounted for clustering at practice level. Ordinal variables were treated as continuous to ensure convergence. Results: We successfully explored our CMO configurations, but analysis was limited because of data availability. Two hundred seventy-six participants were included. We found a statistically significant direct (context to outcome) or indirect effect (context to outcome via mechanism) for two of nine CMOs. The strongest association was between 'ease of getting through to the surgery' and 'being able to get an appointment' with an indirect mediated effect through convenience (proportion of the indirect effect of the total was 21%). Healthcare experience was not directly associated with getting an appointment, but there was a statistically significant indirect effect through convenience (53% mediated effect). Model fit indices showed adequate fit. Conclusions: SEM allowed quantification of CMO configurations and could complement other qualitative and quantitative techniques in realist evaluations to support inferences about strengths of relationships. Future research exploring CMO configurations with SEM should aim to collect, preferably continuous, primary data.

Original publication

DOI

10.1186/s12874-018-0514-x

Type

Journal article

Journal

BMC Medical Research Methodology

Publication Date

19/06/2018

Volume

18