Systematic identification of genomic markers of drug sensitivity in cancer cells
Garnett MJ., Edelman EJ., Heidorn SJ., Greenman CD., Dastur A., Lau KW., Greninger P., Thompson IR., Luo X., Soares J., Liu Q., Iorio F., Surdez D., Chen L., Milano RJ., Bignell GR., Tam AT., Davies H., Stevenson JA., Barthorpe S., Lutz SR., Kogera F., Lawrence K., McLaren-Douglas A., Mitropoulos X., Mironenko T., Thi H., Richardson L., Zhou W., Jewitt F., Zhang T., O'Brien P., Boisvert JL., Price S., Hur W., Yang W., Deng X., Butler A., Choi HG., Chang JW., Baselga J., Stamenkovic I., Engelman JA., Sharma SV., Delattre O., Saez-Rodriguez J., Gray NS., Settleman J., Futreal PA., Haber DA., Stratton MR., Ramaswamy S., McDermott U., Benes CH.
Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines-which represent much of the tissue-type and genetic diversity of human cancers-with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies. © 2012 Macmillan Publishers Limited. All rights reserved.