Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© Trisha Greenhalgh, Harvey Maylor, Sara Shaw, Joseph Wherton, Chrysanthi Papoutsi, Victoria Betton, Natalie Nelissen, Andreas Gremyr, Alexander Rushforth, Mona Koshkouei, John Taylor. Originally published in JMIR Research Protocols (, 13.05.2020. This is an open-access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Research Protocols, is properly cited. The complete bibliographic information, a link to the original publication on, as well as this copyright and license information must be included. Background: Projects to implement health care and social care innovations involving technologies are typically ambitious and complex. Many projects fail. Greenhalgh et al's nonadoption, abandonment, scale-up, spread, and sustainability (NASSS) framework was developed to analyze the varied outcomes of such projects. Objective: We sought to extend the NASSS framework to produce practical tools for understanding, guiding, monitoring, and researching technology projects in health care or social care settings. Methods: Building on NASSS and a complexity assessment tool (CAT), the NASSS-CAT tools were developed (in various formats) in seven co-design workshops involving 50 stakeholders (industry executives, technical designers, policymakers, managers, clinicians, and patients). Using action research, they were and are being tested prospectively on a sample of case studies selected for variety in conditions, technologies, settings, scope and scale, policy context, and project goals. Results: The co-design process resulted in four tools, available as free downloads. NASSS-CAT SHORT is a taster to introduce the instrument and gauge interest. NASSS-CAT LONG is intended to support reflection, due diligence, and preliminary planning. It maps complexity through stakeholder discussion across six domains, using free-text open questions (designed to generate a rich narrative and surface uncertainties and interdependencies) and a closed-question checklist; this version includes an action planning section. NASSS-CAT PROJECT is a 35-item instrument for monitoring how subjective complexity in a technology implementation project changes over time. NASSS-CAT INTERVIEW is a set of prompts for conducting semistructured research or evaluation interviews. Preliminary data from empirical case studies suggest that the NASSS-CAT tools can potentially identify, but cannot always help reconcile, contradictions and conflicts that block projects' progress. Conclusions: The NASSS-CAT tools are a useful addition to existing implementation tools and frameworks. Further support of the implementation projects is ongoing. We are currently producing digital versions of the tools, and plan (subject to further funding) to establish an online community of practice for people interested in using and improving the tools, and hold workshops for building cross-project collaborations.

Original publication




Journal article


JMIR Research Protocols

Publication Date