Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Our aim was to determine whether meal fatty acids influence insulin and glucose responses to mixed meals and whether these effects can be explained by variations in postprandial NEFA and Apo, which regulate the metabolism of triacylglycerol-rich lipoproteins (Apo C and E). A single-blind crossover study examined the effects of single meals enriched in saturated fatty acids SFA), n-6 PUFA and MUFA on plasma metabolite and insulin responses. The triacylglycerol response following the PUFA meal showed a lower net incremental area under the curve than following the SFA and MUFA meals (P<0.007). Compared with the SFA meal, the PUFA meal showed a lower net incremental area under the curve for the NEFA response from initial suppression to the end of the postprandial period (180-480 min; P<0.02), and both PUFA and MUFA showed a lower net incremental glucose response (P<0.02), although insulin concentrations were similar between meals. The pattern of the Apo E response was also different following the SFA meal (P<0.02). There was a significant association between the net incremental NEFA (180-480 min) and glucose response (rs=0.409, P=0.025), and in multiple regression analysis the NEFA response accounted for 24% of the variation in glucose response. Meal SFA have adverse effects on the postprandial glucose response that may be due to greater elevations in NEFA arising from differences in the metabolism of SFA-ν. PUFA- and MUFA-rich lipoproteins. Elevated Apo E responses to high-SFA meals may have important implications for the hepatic metabolism of triacylglycerol-rich lipoproteins. © The Authors 2005.

Original publication




Journal article


British Journal of Nutrition

Publication Date





693 - 700