Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background: Studies estimating excess length of stay (LOS) attributable to nosocomial infections have failed to address time-varying confounding, likely leading to overestimation of their impact. We present a methodology based on inverse probability-weighted survival curves to address this limitation. Methods: A case study focusing on intensive care unit-acquired bacteremia using data from 2 general intensive care units (ICUs) from 2 London teaching hospitals were used to illustrate the methodology. The area under the curve of a conventional Kaplan-Meier curve applied to the observed data was compared with that of an inverse probability-weighted Kaplan-Meier curve applied after treating bacteremia as censoring events. Weights were based on the daily probability of acquiring bacteremia. The difference between the observed average LOS and the average LOS that would be observed if all bacteremia cases could be prevented was multiplied by the number of admitted patients to obtain the total excess LOS. Results: The estimated total number of extra ICU days caused by 666 bacteremia cases was estimated at 2453 (95% confidence interval [CI], 1803-3103) days. The excess number of days was overestimated when ignoring time-varying confounding (2845 [95% CI, 2276-3415]) or when completely ignoring confounding (2838 [95% CI, 2101-3575]). Conclusions: ICU-acquired bacteremia was associated with a substantial excess LOS. Wider adoption of inverse probability-weighted survival curves or alternative techniques that address time-varying confounding could lead to better informed decision making around nosocomial infections and other time-dependent exposures.

Original publication

DOI

10.1093/cid/ciaa136

Type

Journal article

Journal

Clinical Infectious Diseases

Publication Date

01/11/2020

Volume

71

Pages

E415 - E420