Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Multimodal measurements combining broadband near-infrared spectroscopy (NIRS) and phosphorus magnetic resonance spectroscopy ((31)P MRS) assessed associations between changes in the oxidation state of cerebral mitochondrial cytochrome-c-oxidase (Δ[oxCCO]) and (31)P metabolite peak-area ratios during and after transient cerebral hypoxia-ischemia (HI) in the newborn piglet. METHODS: Twenty-four piglets (aged<24 h) underwent transient HI (inspired oxygen fraction 9% and bilateral carotid artery occlusion for ~20 min). Whole-brain (31)P MRS and NIRS data were acquired every minute. Inorganic phosphate (Pi)/epp, phosphocreatine (PCr)/epp, and total nucleotide triphosphate (NTP)/epp were measured by (31)P MRS and were plotted against Δ[oxCCO] during HI and recovery (epp=exchangeable phosphate pool=Pi+PCr+2γ-NTP+β-NTP). RESULTS: During HI Δ[oxCCO], PCr/epp and NTP/epp declined and Pi/epp increased. Significant correlations were seen between (31)P ratios and Δ[oxCCO]; during HI a threshold point was identified where the relationship between Δ[oxCCO] and both NTP/epp and Pi/epp changed significantly. Outcome at 48 h related to recovery of Δ[oxCCO] and (31)P ratios 1h post-HI (survived: 1-h NTP/epp 0.22 ± 0.02, Δ[oxCCO] -0.29 ± 0.50 μM; died: 1-h NTP/epp 0.10 ± 0.04, Δ[oxCCO] -2.41 ± 1.48 μM). CONCLUSIONS: Both lowered Δ[oxCCO] and NTP/epp 1h post-HI indicated mitochondrial impairment. Animals dying before 48 h had slower recovery of both Δ[oxCCO] and (31)P ratios by 1 h after HI.

Original publication




Journal article



Publication Date



102 Pt 1


173 - 183


(31)P, Cytochrome-c-oxidase, Hypoxia–ischemia, MRS, NIRS, Phosphorus, Animals, Hypoxia-Ischemia, Brain, Magnetic Resonance Spectroscopy, Male, Mitochondria, Oxidation-Reduction, Phosphorus Isotopes, Spectroscopy, Near-Infrared, Swine