Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© The Author(s) 2020. New challenges arise in data visualization when the research involves a sizable database. With many data points, classical scatterplots are non-informative due to the cluttering of points. On the contrary, simple plots, such as the boxplot that are of limited use in small samples, offer great potential to facilitate group comparison in the case of an extensive sample. This article presents exploratory data analysis methods useful for inspecting variation across groups in crucial variables and detecting heterogeneity. The exploratory data analysis methods (introduced by Tukey in his seminal book of 1977) encompass a set of statistical tools aimed to extract information from data using simple graphical tools. In this article, some of the exploratory data analysis methods like the boxplot and scatterplot are revisited and enhanced using modern graphical computational devices (as, for example, the heat-map) and their use illustrated with Spanish Social Security data. We explore how earnings vary across several factors like age, gender, type of occupation, and contract, and in particular, the gender gap in salaries is visualized in various dimensions relating to the type of occupation. The exploratory data analysis methods are also applied to assessing and refining competing regressions by plotting residuals-versus-fitted values. The methods discussed should be useful to researchers to assess heterogeneity in data, across-group variation, and classical diagnostic plots of residuals from alternative models fits. JEL CLASSIFICATION: C55; J01; J08; Y10; C80.

Original publication

DOI

10.1177/2340944420957335

Type

Journal article

Journal

BRQ Business Research Quarterly

Publication Date

01/01/2020