Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

IntroductionThe QCOVID algorithm is a risk prediction tool for infection and subsequent hospitalisation/death due to SARS-CoV-2. At the time of writing, it is being used in important policy-making decisions by the UK and devolved governments for combatting the COVID-19 pandemic, including deliberations on shielding and vaccine prioritisation. There are four statistical validations exercises currently planned for the QCOVID algorithm, using data pertaining to England, Northern Ireland, Scotland and Wales, respectively. This paper presents a common procedure for conducting and reporting on validation exercises for the QCOVID algorithm.Methods and analysisWe will use open, retrospective cohort studies to assess the performance of the QCOVID risk prediction tool in each of the four UK nations. Linked datasets comprising of primary and secondary care records, virological testing data and death registrations will be assembled in trusted research environments in England, Scotland, Northern Ireland and Wales. We will seek to have population level coverage as far as possible within each nation. The following performance metrics will be calculated by strata: Harrell’s C, Brier Score, R2 and Royston’s D.Ethics and disseminationApprovals have been obtained from relevant ethics bodies in each UK nation. Findings will be made available to national policy-makers, presented at conferences and published in peer-reviewed journal.

Original publication




Journal article


BMJ Open



Publication Date





e050994 - e050994