Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the bb¯bb¯, bb¯τ+τ− and bb¯γγ decay channels with single-Higgs boson analyses targeting the γγ, ZZ∗, WW∗, τ+τ− and bb¯ decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton−proton collisions at s√=13 TeV and correspond to an integrated luminosity of 126−139 fb−1. The combination of the double-Higgs analyses sets an upper limit of μHH<2.4 at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling (λHHH), values outside the interval −0.4


Journal article


Physics Letters B: Nuclear Physics and Particle Physics



Publication Date