Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractThis paper presents the observation of four-top-quark ($$t\bar{t}t\bar{t}$$ t t ¯ t t ¯ ) production in proton-proton collisions at the LHC. The analysis is performed using an integrated luminosity of 140 $$\hbox {fb}^{-1}$$ fb - 1 at a centre-of-mass energy of 13 TeV collected using the ATLAS detector. Events containing two leptons with the same electric charge or at least three leptons (electrons or muons) are selected. Event kinematics are used to separate signal from background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The observed (expected) significance of the measured $$t\bar{t}t\bar{t}$$ t t ¯ t t ¯ signal with respect to the standard model (SM) background-only hypothesis is 6.1 (4.3) standard deviations. The $$t\bar{t}t\bar{t}$$ t t ¯ t t ¯ production cross section is measured to be $$22.5^{+6.6}_{-5.5}$$ 22 . 5 - 5.5 + 6.6  fb, consistent with the SM prediction of $$12.0 \pm 2.4$$ 12.0 ± 2.4 fb within 1.8 standard deviations. Data are also used to set limits on the three-top-quark production cross section, being an irreducible background not measured previously, and to constrain the top-Higgs Yukawa coupling and effective field theory operator coefficients that affect $$t\bar{t}t\bar{t}$$ t t ¯ t t ¯ production.

Original publication

DOI

10.1140/epjc/s10052-023-11573-0

Type

Journal article

Journal

The European Physical Journal C

Publisher

Springer Science and Business Media LLC

Publication Date

12/06/2023

Volume

83