Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We survey 62 users of a university asymptomatic SARS-CoV-2 testing service on details of their activities, protective behaviours and contacts in the 7 days prior to receiving a positive or negative SARS-CoV-2 PCR test result in the period October 2020-March 2021. The resulting data set is novel in capturing very detailed social contact history linked to asymptomatic disease status during a period of significant restriction on social activities. We use this data to explore 3 questions: (i) Did participation in university activities enhance infection risk? (ii) How do contact definitions rank in their ability to explain test outcome during periods of social restrictions? (iii) Do patterns in the protective behaviours help explain discrepancies between the explanatory performance of different contact measures? We classify activities into settings and use Bayesian logistic regression to model test outcome, computing posterior model probabilities to compare the performance of models adopting different contact definitions. Associations between protective behaviours, participant characteristics and setting are explored at the level of individual activities using multiple correspondence analysis (MCA). We find that participation in air travel or non-university work activities was associated with a positive asymptomatic SARS-CoV-2 PCR test, in contrast to participation in research and teaching settings. Intriguingly, logistic regression models with binary measures of contact in a setting performed better than more traditional contact numbers or person contact hours (PCH). The MCA indicates that patterns of protective behaviours vary between setting, in a manner which may help explain the preference for any participation as a contact measure. We conclude that linked PCR testing and social contact data can in principle be used to test the utility of contact definitions, and the investigation of contact definitions in larger linked studies is warranted to ensure contact data can capture environmental and social factors influencing transmission risk.

Original publication




Journal article



Publication Date





School of Veterinary Medicine and Science, University of Nottingham, United Kingdom; School of Mathematical Sciences, University of Nottingham, United Kingdom.


Humans, Bayes Theorem, United Kingdom, COVID-19, SARS-CoV-2, COVID-19 Testing