Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Over time, the performance of clinical prediction models may deteriorate due to changes in clinical management, data quality, disease risk and/or patient mix. Such prediction models must be updated in order to remain useful. In this study, we investigate dynamic model updating of clinical survival prediction models. In contrast to discrete or one-time updating, dynamic updating refers to a repeated process for updating a prediction model with new data. We aim to extend previous research which focused largely on binary outcome prediction models by concentrating on time-to-event outcomes. We were motivated by the rapidly changing environment seen during the COVID-19 pandemic where mortality rates changed over time and new treatments and vaccines were introduced. METHODS: We illustrate three methods for dynamic model updating: Bayesian dynamic updating, recalibration, and full refitting. We use a simulation study to compare performance in a range of scenarios including changing mortality rates, predictors with low prevalence and the introduction of a new treatment. Next, the updating strategies were applied to a model for predicting 70-day COVID-19-related mortality using patient data from QResearch, an electronic health records database from general practices in the UK. RESULTS: In simulated scenarios with mortality rates changing over time, all updating methods resulted in better calibration than not updating. Moreover, dynamic updating outperformed ad hoc updating. In the simulation scenario with a new predictor and a small updating dataset, Bayesian updating improved the C-index over not updating and refitting. In the motivating example with a rare outcome, no single updating method offered the best performance. CONCLUSIONS: We found that a dynamic updating process outperformed one-time discrete updating in the simulations. Bayesian updating offered good performance overall, even in scenarios with new predictors and few events. Intercept recalibration was effective in scenarios with smaller sample size and changing baseline hazard. Refitting performance depended on sample size and produced abrupt changes in hazard ratio estimates between periods.

Original publication




Journal article


Diagn Progn Res

Publication Date





Clinical prediction models, Dynamic model, Model updating, Survival analysis