Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Macrophage scavenger receptor A (SR-A) is a multifunctional, multiligand pattern recognition receptor with roles in innate immunity, apoptotic cell clearance, and age-related degenerative pathologies, such as atherosclerosis and Alzheimer's disease. Known endogenous SR-A ligands are polyanionic and include modified lipoproteins, advanced glycation end products, and extracellular matrix proteins. No native plasma ligands have been identified, but it is known that SR-A recognition of unidentified serum components mediates integrin-independent macrophage adhesion, which may drive chronic local inflammation. In this study, we used a high-throughput fractionation and screening method to identify novel endogenous SR-A ligands that may mediate macrophage adhesion. SR-A was found to recognize the exchangeable apolipoproteins A-I and E (apo A-I and apo E, respectively) in both lipid-free and lipid-associated form, suggesting the shared amphipathic α-helix as a potential recognition motif. Adhesion of RAW 264.7 macrophages to surfaces coated with apo A-I and apo E4 proved to be integrin-independent and could be blocked by anti-SR-A antibodies. The presence of apo A-I and apo E in pathological deposits, such as atherosclerotic lesions and neurotoxic Alzheimer's plaques, suggests a possible contribution of SR-A-dependent adhesion of macrophages to an inflammatory microenvironment. © 2009 American Chemical Society.

Original publication

DOI

10.1021/bi9013769

Type

Journal article

Journal

Biochemistry

Publication Date

22/12/2009

Volume

48

Pages

11858 - 11871