Interaction of HLA-B27 homodimers with KIR3DL1 and KIR3DL2, unlike HLA-B27 heterotrimers, is independent of the sequence of bound peptide
Kollnberger S., Chan A., Sun MY., Chen LY., Wright C., di Gleria K., McMichael A., Bowness P.
HLA-B27 can form beta-2 microglobulin (β2m)-associated heterotrimers (HLA-B27) and β2m-free homodimers (B272). Here, we study the role of complexed peptide in the interaction of these forms of B27 with the killer cell immunoglobulin (Ig)-like receptors KIR3DL1 and KIR3DL2 and with Ig-like transcripts LILRB1 and LILRB2. HLA-B27 tetramers complexed with three of five different naturally processed self peptides and three of seven pathogen-derived epitopes bound to KIR3DL1-expressing transfectants and NK cells. Heterotrimeric complexes containing peptides with charged amino acids at position 8 did not bind to KIR3DL1; however, studies with analogue peptides demonstrated that these are not the only peptide residues involved in binding. KIR3DL1 ligation by HLA-B27 inhibited NK cell IFN-γ production in a peptide-dependent fashion. B27 but not HLA-A2, B7 or B57 heavy chains formed homodimers in the presence of peptide epitopes. B272 bound to KIR3DL1, KIR3DL2 and LILRB2 but not LILRB1. KIR3DL2 ligation by B272 inhibited NK and T cell IFN-γ production. By contrast with HLA heterotrimers, B272 binding to KIR did not depend on the sequence of the bound peptide. Differences in KIR binding to classical HLA and B272 could be involved in the pathogenesis of spondyloarthritis. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.