Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background. Dietary studies differ in design and quality making it difficult to compare results. This study quantifies the prospective association between dietary energy density (DED) and adiposity in children using a meta-analysis method that adjusts for differences in design and quality through eliciting and incorporating expert opinion on the biases and their uncertainty. Method. Six prospective studies identified by a previous systematic literature search were included. Differences in study quality and design were considered respectively as internal and external biases and captured in bias checklists. Study results were converted to correlation coefficients; biases were considered either additive or proportional on this scale. The extent and uncertainty of the internal and external biases in each study were elicited in a formal process by five quantitatively-trained assessors and five subject-matter specialists. Biases for each study were combined across assessors using median pooling and results combined across studies by random-effects meta-analysis. Results. The unadjusted combined correlation between DED and adiposity change was 0.06 (95%CI 0.01, 0.11; p = 0.013), but with considerable heterogeneity (I2 = 52%). After bias-adjustment the pooled correlation was 0.17 (95%CI - 0.11, 0.45; p = 0.24), and the studies were apparently compatible (I2 = 0%). Conclusions. This method allowed quantitative synthesis of the prospective association between DED and adiposity change in children, which is important for the development of evidence-informed policy. Bias adjustment increased the magnitude of the positive association but the widening confidence interval reflects the uncertainty of the assessed biases and implies that higher quality studies are required. © 2011 Wilks et al; licensee BioMed Central Ltd.

Original publication

DOI

10.1186/1471-2458-11-48

Type

Journal article

Journal

BMC Public Health

Publication Date

25/01/2011

Volume

11