Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© Lucy Mackillop, Jane Elizabeth Hirst, Katy Jane Bartlett, Jacqueline Susan Birks, Lei Clifton, Andrew J Farmer, Oliver Gibson, Yvonne Kenworthy, Jonathan Cummings Levy, Lise Loerup, Oliver Rivero-Arias, Wai-Kit Ming, Carmelo Velardo, Lionel Tarassenko. Background: Treatment of hyperglycemia in women with gestational diabetes mellitus (GDM) is associated with improved maternal and neonatal outcomes and requires intensive clinical input. This is currently achieved by hospital clinic attendance every 2 to 4 weeks with limited opportunity for intervention between these visits. Objective: We conducted a randomized controlled trial to determine whether the use of a mobile phone-based real-time blood glucose management system to manage women with GDM remotely was as effective in controlling blood glucose as standard care through clinic attendance. Methods: Women with an abnormal oral glucose tolerance test before 34 completed weeks of gestation were individually randomized to a mobile phone-based blood glucose management solution (GDm-health, the intervention) or routine clinic care. The primary outcome was change in mean blood glucose in each group from recruitment to delivery, calculated with adjustments made for number of blood glucose measurements, proportion of preprandial and postprandial readings, baseline characteristics, and length of time in the study. Results: A total of 203 women were randomized. Blood glucose data were available for 98 intervention and 85 control women. There was no significant difference in rate of change of blood glucose (–0.16 mmol/L in the intervention and –0.14 mmol/L in the control group per 28 days, P=.78). Women using the intervention had higher satisfaction with care (P=.049). Preterm birth was less common in the intervention group (5/101, 5.0% vs 13/102, 12.7%; OR 0.36, 95% CI 0.12-1.01). There were fewer cesarean deliveries compared with vaginal deliveries in the intervention group (27/101, 26.7% vs 47/102, 46.1%, P=.005). Other glycemic, maternal, and neonatal outcomes were similar in both groups. The median time from recruitment to delivery was similar (intervention: 54 days; control: 49 days; P=.23). However, there were significantly more blood glucose readings in the intervention group (mean 3.80 [SD 1.80] and mean 2.63 [SD 1.71] readings per day in the intervention and control groups, respectively P<.001). There was no significant difference in direct health care costs between the two groups, with a mean cost difference of the intervention group compared to control of –£1044 (95% CI –£2186 to £99). There were no unexpected adverse outcomes. Conclusions: Remote blood glucocse monitoring in women with GDM is safe. We demonstrated superior data capture using GDm-health. Although glycemic control and maternal and neonatal outcomes were similar, women preferred this model of care. Further studies are required to explore whether digital health solutions can promote desired self-management lifestyle behaviors and dietetic adherence, and influence maternal and neonatal outcomes. Digital blood glucose monitoring may provide a scalable, practical method to address the growing burden of GDM around the world.

Original publication

DOI

10.2196/mhealth.9512

Type

Journal article

Journal

Journal of medical internet research

Publication Date

01/03/2018

Volume

20