Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

BACKGROUND: A lack of consensus exists concerning how to identify "heavy users" of inpatient mental health services. AIM: To identify a statistical approach that captures, in a clinically meaningful way, "heavy" users of inpatient services using number of admissions and total time spent in hospital. METHODS: "Simple" statistical methods (e.g. top 2%) and data driven methods (e.g. the Poisson mixture distribution) were applied to admissions made to adult acute services of a London mental health trust. RESULTS: The Poisson mixture distribution distinguished "frequent users" of inpatient services, defined as having 4 + admissions in the study period. It also distinguished "high users" of inpatient services, defined as having 52 + occupied bed days. Together "frequent" and "high" users were classified as "heavy users". CONCLUSIONS: Data driven criteria such as the Poisson mixture distribution can identify "heavy" users of inpatient services. The needs of this group require particular attention.

Original publication

DOI

10.1080/09638237.2016.1207221

Type

Journal article

Journal

J Ment Health

Publication Date

10/2016

Volume

25

Pages

455 - 460

Keywords

Inpatient services, heavy use, length of stay, readmission, statistical methodology, Adolescent, Adult, Bed Occupancy, Female, Hospitals, Psychiatric, Humans, Inpatients, Length of Stay, London, Male, Mental Health Services, Patient Admission, Patient Readmission, Poisson Distribution, Young Adult