Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. Background A possible strategy for increasing smoking cessation rates could be to provide smokers with feedback on the current or potential future biomedical effects of smoking using, for example, measurement of exhaled carbon monoxide (CO), lung function, or genetic susceptibility to lung cancer or other diseases. Objectives The main objective was to determine the efficacy of providing smokers with feedback on their exhaled CO measurement, spirometry results, atherosclerotic plaque imaging, and genetic susceptibility to smoking-related diseases in helping them to quit smoking. Search methods For the most recent update, we searched the Cochrane Tobacco Addiction Group Specialized Register in March 2018 and ClinicalTrials. Gov and the WHO ICTRP in September 2018 for studies added since the last update in 2012. Selection criteria Inclusion criteria for the review were: a randomised controlled trial design; participants being current smokers; interventions based on a biomedical test to increase smoking cessation rates; control groups receiving all other components of intervention; and an outcome of smoking cessation rate at least six months after the start of the intervention. Data collection and analysis We used standard methodological procedures expected by Cochrane. We expressed results as a risk ratio (RR) for smoking cessation with 95% confidence intervals (CI). Where appropriate, we pooled studies using a Mantel-Haenszel random-effects method. Main results We included 20 trials using a variety of biomedical tests interventions; one trial included two interventions, for a total of 21 interventions. We included a total of 9262 participants, all of whom were adult smokers. All studies included both men and women adult smokers at different stages of change and motivation for smoking cessation. We judged all but three studies to be at high or unclear risk of bias in at least one domain. We pooled trials in three categories according to the type of biofeedback provided: feedback on risk exposure (five studies); feedback on smoking-related disease risk (five studies); and feedback on smoking-related harm (11 studies). There was no evidence of increased cessation rates from feedback on risk exposure, consisting mainly of feedback on CO measurement, in five pooled trials (RR 1.00, 95% CI 0.83 to 1.21; I2 = 0%; n = 2368). Feedback on smoking-related disease risk, including four studies testing feedback on genetic markers for cancer risk and one study with feedback on genetic markers for risk of Crohn's disease, did not show a benefit in smoking cessation (RR 0.80, 95% CI 0.63 to 1.01; I2 = 0%; n = 2064). Feedback on smoking-related harm, including nine studies testing spirometry with or without feedback on lung age and two studies on feedback on carotid ultrasound, also did not show a benefit (RR 1.26, 95% CI 0.99 to 1.61; I2 = 34%; n = 3314). Only one study directly compared multiple forms of measurement with a single form of measurement, and did not detect a significant difference in effect between measurement of CO plus genetic susceptibility to lung cancer and measurement of CO only (RR 0.82, 95% CI 0.43 to 1.56; n = 189). Authors' conclusions There is little evidence about the effects of biomedical risk assessment as an aid for smoking cessation. The most promising results relate to spirometry and carotid ultrasound, where moderate-certainty evidence, limited by imprecision and risk of bias, did not detect a statistically significant benefit, but confidence intervals very narrowly missed one, and the point estimate favoured the intervention. A sensitivity analysis removing those studies at high risk of bias did detect a benefit. Moderate-certainty evidence limite by imprecision and risk of bias, did not detect a statistically significant benefit, but confidence intervals very narrowly missed one, and the point estimate favoured the intervention. A sensitivity analysis removing those studies at high risk of bias did detect a benefit. Moderate-certainty evidence limited by risk of bias did not detect an effect of feedback on smoking exposure by CO monitoring. Low-certainty evidence, limited by risk of bias and imprecision, did not detect a benefit from feedback on smoking-related risk by genetic marker testing. There is insufficient evidence with which to evaluate the hypothesis that multiple types of assessment are more effective than single forms of assessment.

Original publication

DOI

10.1002/14651858.CD004705.pub5

Type

Journal article

Journal

Cochrane Database of Systematic Reviews

Publication Date

26/03/2019

Volume

2019