Predicting out-of-office blood pressure in the clinic (PROOF-BP): Derivation and validation of a tool to improve the accuracy of blood pressure measurement in clinical practice
© 2016 American Heart Association, Inc. Patients often have lower (white coat effect) or higher (masked effect) ambulatory/home blood pressure readings compared with clinic measurements, resulting in misdiagnosis of hypertension. The present study assessed whether blood pressure and patient characteristics from a single clinic visit can accurately predict the difference between ambulatory/home and clinic blood pressure readings (the home-clinic difference). A linear regression model predicting the home-clinic blood pressure difference was derived in 2 data sets measuring automated clinic and ambulatory/home blood pressure (n=991) using candidate predictors identified from a literature review. The model was validated in 4 further data sets (n=1172) using area under the receiver operator characteristic curve analysis. A masked effect was associated with male sex, a positive clinic blood pressure change (difference between consecutive measurements during a single visit), and a diagnosis of hypertension. Increasing age, clinic blood pressure level, and pulse pressure were associated with a white coat effect. The model showed good calibration across data sets (Pearson correlation, 0.48-0.80) and performed well-predicting ambulatory hypertension (area under the receiver operator characteristic curve, 0.75; 95% confidence interval, 0.72-0.79 [systolic]; 0.87; 0.85-0.89 [diastolic]). Used as a triaging tool for ambulatory monitoring, the model improved classification of a patient's blood pressure status compared with other guideline recommended approaches (93% [92% to 95%] classified correctly; United States, 73% [70% to 75%]; Canada, 74% [71% to 77%]; United Kingdom, 78% [76% to 81%]). This study demonstrates that patient characteristics from a single clinic visit can accurately predict a patient's ambulatory blood pressure. Usage of this prediction tool for triaging of ambulatory monitoring could result in more accurate diagnosis of hypertension and hence more appropriate treatment.